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Autosampling from bioreactors reduces error, increases reproducibility and offers
improved aseptic handling when compared to manual sampling. Additionally, autosam-
pling greatly decreases the hands-on time required for a bioreactor experiment and
enables sampling 24 h a day. We have designed, built and tested a low cost, open source,
automated bioreactor sampling system, the BioSamplr. The BioSamplr can take up to ten
samples from a bioreactor at a desired sample interval and cools them to a desired temper-
ature. The device, assembled from low cost and 3D printed components, is controlled wire-
lessly by a Raspberry Pi, and records all sampling data to a log file. The cost and
accessibility of the BioSamplr make it useful for laboratories without access to more expen-
sive and complex autosampling systems.
� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Hardware in context

Fermentations must be monitored closely, sometimes over long periods of time. Consistent sampling, even at odd-hours,
is essential and can be labor intensive. Automated sampling can reduce this burden, while additionally increasing sterility,
removing user error and improving reproducibility. Autosampling is not a new concept, with one of the first systems for
aseptic sampling described in 1987 by Seiffert and Matteau [1]. Despite significant developments in bioreactor designs over
the past 30 years, autosampling has still not become commonplace in most laboratories. Currently, while multiple commer-
cial automated sampling systems do exist they are quite expensive, which has limited their adoption by many labs. The
BioSamplr is an accessible option, costing approximately $700, (excluding the cost of the sampling probe) and assembled
from affordable materials and 3D printed parts. All functions are run via a Raspberry Pi controller using open source soft-
ware. The BioSamplr takes samples at desired time intervals and holds them at a target temperature. The current design
enables up to 10 samples dispensed into chilled, standard 1.5 mL microcentrifuge tubes. Sample cooling has been validated
for up to 30 h at 4 degrees Celsius. Fluid sensors validate a successful sampling event and all temperature and sampling data
is recorded to log files (Table 1).

As mentioned, there are several commercial autosampling systems available for bioreactors. These various systems offer
advanced features and capabilities. For example, some can prepare pre-diluted samples while others can deliver aliquots to
up to five different analytical instruments. Many designs are modular with multiple components including fraction collec-
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Table 1
Specifications table.

Hardware name BioSamplr

Subject area d Biological Sciences
d Bioengineering
d Fermentation

Hardware type Biological sample handling and preparation
Open Source License Attribution-ShareAlike 4.0
Cost of Hardware $700
Source File Repositories Hardware: https://doi.org/10.17605/OSF.IO/EGTSU

Software also available at: https://github.com/DukeLynchLab/BioSamplr
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tors, valve manifolds, and sterile filtering probes. A few commercial autosampling systems available for lab bioreactors
include the BioProbeTM from Bbi-Biotech, the Omnicoll Fraction Collector and Sampler from Lambda Instruments, the Seg-
flowTM by Flownamics, and the more general reactor sampling system, the EasySamplerTM by Mettler Toledo. A summary of
some of the key features of these systems with a comparison to the BioSamplr is given in Table 2 below. While to the user,
the BioSamplr is lower cost compared to commercially available products, as open source hardware it lacks a safety certi-
fication (such as UL certification), a warranty and technical support and service [2]. These costs can be a large component
of commercial products, such as those in Table 2, and not accounted for with the BioSamplr. A UL safety certificate alone
can cost from $5,000 to over $25,000 per product and would be at the discretion of the user. Avoiding these costs is a primary
benefit of open source hardware (Table 3).

2. Hardware description

The BioSamplr design was primarily based upon work by Cannizzaro and Von Stockar, (in a now abandoned US patent
application) wherein sterile air can be used for ‘‘flushing of sample tubing between or during individual sampling steps”
[3]. In this design (Fig. 1a), a pump is used to pull the liquid/air and valves are used to switch from sampling the reactor
to purging with filtered air. The BioSamplr hardware (Fig. 1b-e) can be broken down into four primary systems i) the pump-
ing/valve system, ii) the cartesian system, iii) the sample block, and v) the electronics.

2.1. Cartesian system

The cartesian system (Fig. 1b) locates the blunt sample dispensing needle over a target sample tube (or waste) based on x,
y coordinates. The sample needle is moved to a given x,y coordinate by first moving a gantry (via an actuated lead screw)
along an aluminum rail. The needle is centered between two rows of five sample tubes. A stepper motor is used to rotate
the needle to dispense the sample in a given tube.

2.2. Sample block

The sample block consists of a rack which holds tubes in a water filled, insulated aluminum box, cooled with peltiers,
which in turn transfers heat to a CPU cooling unit containing a radiator and exhaust fan. Peltier modules are commonly used
in cooling devices and more frequently in DIY thermal control equipment [4]. The temperature controlled sample block uses
two custom fabricated thermal probes [5], to take readings from both the water bath and the radiator, which are then
recorded and used to control the temperature. Pulse width modulation (PWM) is used to control the Peltier’s duty cycle turn-
ing it on and off in order to modulate temperature control. PWM has been compared to constant current circuitry and it has
been shown that while energy efficiency decreases slightly [6], the lifespan of the Peltier module is unaffected and the mod-
ule can remain reliable over one hundred thousand hours [7]. With the current configuration the sample block has been val-
idated for use up to 30 h and can maintain a 4 �C setpoint within 1.2 degrees.

2.3. Pump/valve system

The pumping system uses two 24 V three-way pinch valves to direct fluid flow from the bioreactor, a cleaning solution, or
external sterile filtered air. Liquid/air is pumped through sample tubing to a blunt sample dispensing needle. These fluids are
propelled through the flowpath by a 12 V DC peristaltic pump. Fluid sensors along the flow path confirm that a sample has
actually been taken.

2.4. Electronics housing

The electronics, two power source modules (24 V, 6–9 A and 5 V, 3A) and the Raspberry Pi controller are contained in a 3D
printed housing beneath the cartesian system. Each system is discussed below. Real time cell free sampling can be performed
2
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Table 3
Design file summary.

Design file name File type Open source license Location of the file

Fan_Cover.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Needle_Holder.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
M5_7mm_Spacer.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Part1_X_Gantry.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Part2_X_Gantry.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Pillow_Bracket.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Radiator_Bracket.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Sample_Block_Lid.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Sample_Block.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Screw_Stepper_Bracket.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Top_Brackets.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Waste_Tube_Bracket.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Wire_Clips.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
X_Switch_Bracket.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Y_Switch_Bracket.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
YZ_Bracket_x2.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Fan_Wall.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Housing_Bottom.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Housing_Top.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Pi_Wall.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Power_Source_Wall.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Safety_Bracket.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
System_Fan_Bracket.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Vent_Wall.stl 3D Print (.stl) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
BioSamplr_Schematic.pdf Schematic (.pdf) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
BioSamplr_Gerber.zip Gerber (.zip) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
BioSamplr_Master.py Python File(.py) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Log_Temp.py Python File(.py) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Measure_Temp.py Python File(.py) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
boot.py Python File(.py) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Cleaning_Cycle.py Python File(.py) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
autoHome.py Python File(.py) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Cartesian_Test.py Python File(.py) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
GPIO_cleanup.py Python File(.py) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Photo_Transistor_Test.py Python File(.py) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
Pump_Test.py Python File(.py) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
simpletest.py Python File(.py) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU
sleep.py Python File(.py) Attribution-ShareAlike 4.0 https://doi.org/10.17605/OSF.IO/EGTSU

Table 2
A comparison of bioreactor autosamplers.

Sampling System BioProbe Omnicoll Segflow 1200 EasySampler 1210 BioSamplr

Source Bbi Biotech Lambda Instruments Flownamics Mettler Toledo This Study
Bioreactor/Channels 1–4 1–20 1–8 1 1
Sample # 51 1–288 1–192 12 10
Sample Size (mL) 0.5–50 0.05–500 1.25–50 less than10 0.5–1.0
Integrated Fraction Collector Yes Yes No Yes Yes
Purge Volume (mL) 0 NA 0.55–0.75 0.02 0.85
Sample Filtration Yes Yes - via 3rd party probes Yes None Yes - via 3rd party probes
Sample Thermal Control None None 4-25C None 4-25C
Minimal Sampling Interval NA 0.1 NA 2 min 52 sec 1 min
Footprint (inches) 8.67x 19.7 13.4x19.3 10x10 12.2x19.7 4x9.5
Computer Connection Wired Wired Wired Wired Wireless
Cost NA $4500 $22,000 $18,400 $700

NA – not available.
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using commercially available probes, such as the ceramic FISP probe (obtainable from Flownamics (Amsterdam, Nether-
lands) or from YSI (Yellow Springs, OH SKU 002850) or the BioProbe Sampling probe (obtainable from bbi Biotech, Berlin,
Germany).
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Fig. 1. a) A picture of an assembled BioSamplr system including: (b) the Cartesian System, which moves sampling needle to the appropriate sample on the
(c) Sample Block, which holds and chills up to 10 microfuge tubes. Samples are drawn from a reactor by a (d) Pump and Valve System. This system uses a
peristaltic pump to draw liquid (sample and or cleaning solution) or air into the system. Pinch valves control which medium is pumped. e) The electronics
including a Raspberry Pi Controller are contained in a housing underneath the other components.
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3. Design files

3.1. 3D Print files

There are twenty four different 3D print files, some of which include multiple pieces. These include all BioSamplr com-
ponents that are not directly purchased. All design/print files are obtainable at https://doi.org/10.17605/OSF.IO/EGTSU.

d The ‘‘Needle Holder” attaches a female luer-lok connector with an 18 gauge blunt sample dispensing needle to the y-axis
stepper motor.

d ‘‘M5_7mm_Spacer.stl” includes four 7 mm spacers that are used to space the wheels of the X Gantry from the Ganty. Only
two are necessary but as they are a small part, extra are included.

d ‘‘Part 1 X Gantry” is the main section of the gantry which holds the y-axis stepper motor and connects to Part 2 of the X
Gantry. This gantry also holds the y-axis endstop switch.

d ‘‘Part 2 X Gantry” connects Part 1 of the X Gantry to wheels which mount on the x-axis rail. This piece also holds the sec-
ond fluid sensor.

d The ‘‘Pillow Bracket” holds the lead screw pillowwhich supports one end of the lead screw and connects to the right leg of
the cartesian system outside of the right top bracket.

d The ‘‘Radiator Bracket” holds the radiator and connects the two legs together.
d The ‘‘Sample Block Lid” holds ten microcentrifuge sample tubes in the sample block.
d The ‘‘Sample Block” is a hollow walled box which holds an aluminum box and connects to the radiator holding the Peltier
in place as well as the aluminum box to the Peltier. The hollow walls can be filled with spray foam insulation.

d The ‘‘Screw Stepper Bracket” mounts the x-axis stepper motor to the left leg of the cartesian system.
d The ‘‘Top Brackets” connect the x-axis aluminum rail to the two legs of the cartesian system.
d The ‘‘Waste Tube Bracket” attaches to the left leg of the cartesian system and has a notch cutout on the backside for a zip-
tie. This zip-tip will hold a 15 mL centrifuge tube with a cut off bottom that is used as a funnel to direct waste liquids into
the waste tubing and further to the waste location.

d The ‘‘Wire Clips” mount into the v-slot of the aluminum extrusion rails and can tether wires to the rails for cable man-
agement. They are meant for the back side of the cartesian system and while only four are necessary they are a small part,
so twelve are included.
4
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d The ‘‘X Switch Bracket” mounts an endstop switch to the leftmost side of the x-axis aluminum rail. The X Gantry triggers
this switch to signal its location on the x-axis.

d The ‘‘Y Switch Bracket” mounts an endstop switch to the X-Gantry. The sample dispensing needle triggers this switch to
signal its location rotating on the y-axis.

d The two ‘‘YZ Brackets” connect the legs of the cartesian system to the two aluminum rails and the Radiator Bracket.
d The ‘‘Fan Wall” is part of the circuitry housing and mounts a system cooling fan using the System Fan Bracket. This wall
connects to the Housing Bottom, Housing Top, Power Source Wall and Pi Wall.

d The ‘‘Housing Bottom” is part of the circuitry housing and mounts the main PCB using heat set inserts while also connect-
ing to other walls of the circuitry housing. This surface connects to all walls of the circuitry housing.

d The ‘‘Housing Top” is part of the circuitry housing and mounts the cartesian system to the circuitry housing using heat set
inserts. This surface connects to the Pi Wall, Fan Wall, Vent Wall, and the base aluminum rails of the cartesian system.

d The ‘‘Pi Wall” is the back wall of the circuitry housing and has locations to mount a Raspberry Pi as well as a dual channel
relay board by way of heat set inserts. This wall connects to the Housing Bottom, Housing Top. Fan Wall and Vent Wall.

d The ‘‘Power Source Wall” is the front wall of the circuitry housing and has locations for the two buck power supply mod-
ules as well as a step-down buck converter module all using heat set inserts. This wall connects to the Housing Bottom,
Fan Wall, and Vent Wall.

d The ‘‘Safety Bracket” mounts over the power socket wiring on the inside of the circuitry housing to provide some safety
from live wires.

d The ‘‘System Fan Bracket” mounts to the Fan Wall and holds the system cooling fan in place.
d The ‘‘Vent Wall” has a socket for the main power socket as well as vents to allow aeration of electronics. This wall con-
nects to the Housing Bottom, Housing Top, Pi Wall and Power Source Wall.

3.2. Electronics

There are two custom electronic systems, the power source and controller PCB, which are integrated with other electronic
components. These are described in the three files below.

d The ‘‘BioSamplr Gerber” file is the layout of the main PCB that controls the electronics of the sampler.
d The ‘‘BioSamplr PCB Schematic” outlines all connections within the circuitry of the device.
d The ‘‘BioSamplr Powersource Schematic” outlines the connections from the power socket powersource to the buck pow-
ersource modules and the buck step down converter with terminal connections to the PCB and Raspberry Pi by way of a
DC barrel adapter.

3.3. Software

As mentioned above, the BioSamplr is controlled via a Raspberry Pi and python scripts. The scripts can be divided into 2
categories, those used for system initialization and calibration and those used for operation. These scripts are described
below.

Initialization/Calibration Scripts

d ‘‘boot.py” is a boot file that when added to the Raspberry Pi startup process, sets both valves to their initial positions.
d ‘‘GPIO_cleanup.py” is a script that initializes all GPIO pins of use on the Raspberry Pi and sets them all to ‘‘LOW” which
turns off the pump, and Peltier while setting the valves to their default position.

d ‘‘Cartesian_Test.py” is a script that locates the sample dispensing needle over each sample tube to test location
coordinates

d ‘‘Photo_Transistor_Test.py” is a script that reads the two analog to digital converter channels for the two fluid sensors and
converts their raw values into a value between 0 and 1. This script is used for calibrating fluid sensors.

d ‘‘Pump_Test.py” is a script that has all pump and valve functions so that they can easily be controlled one by one. The
purpose of this script is to validate that the pump and valves are functioning properly.

d ‘‘sleep.py” is a script that activates the stepper motors for five minutes to allow a voltage reading to be measured from the
motor driver chips on the main PCB. This is necessary during setup to calibrate the current going to the stepper motors

d ‘‘simpletest.py” is a script written by Tony DiCola Adafruit Industries [8]. This script reads the eight different channels of
the analog to digital converter and prints their values to the terminal. The purpose of this script is to validate that the
thermal probes and fluid sensors are reading properly as well as that the other four channels are properly grounded
and reading zero.

Operation Scripts

d ‘‘BioSamplr_Master.py” is the master control python script needed to control sampling. This control script will take ten
samples at a user input time-interval and keep the sample block at a setpoint temperature while logging sampling data to
a log file.
5
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d ‘‘autoHome.py” is a script that first rotates the sample dispensing needle on the y-axis until it triggers the y-axis endstop
switch, then rotates back to the vertical position between the two rows of sample tubes. Secondly, it moves the x gantry
along the x axis until it engages the x-axis endstop switch and then backs off this switch slightly. The purpose of this
motion is to ‘‘home” the sample dispensing needle over a reference location that is also the location of the waste tube.

d ‘‘Log_Temp.py” is a script that activates the sample block temperature control and logs temperature readings from two
thermal probes to a log file.

d ‘‘Measure_Temp.py” is a script that reads two thermal probes and prints their resulting temperature values to the
terminal.

d ‘‘Cleaning_Cycle.py” is a cleaning cycle script that gives instructions to place sample tubing in a cleaning solution or air to
clean sample tubing.

4. Bill of materials

The bill of materials can be found at https://doi.org/10.17605/OSF.IO/EGTSU
5. Build instructions & operation

Due to the complexity of the instrument, we have prepared several videos which walk through the detailed BioSamplr
assembly, calibration and unit operation including software set up. Links to these videos are found in Table 4 below. With
a single low speed 3D printer, printing of components can be expected to take about 5 days. For someone with experience
with these type of DIY projects as well as Raspberry Pi, ~3 days should be planned for assembly and calibration. Additionally,
to fabricate two thermal probes, follow the directions found online to make a waterproof, negative temperature coefficient
(NTC) thermistor probe [5].
5.1. 3D printing

Print all 3D printed components using the design files. There are twenty four different 3D print files, some of which
include multiple pieces. These parts are listed in Table 5. All prints were performed using an Ender 3 Pro 3D Printer (Bill
of Materials- Tools) with a layer height of 0.2 mm, an infill density of 50%, a print temperature of 210 �C, a bed temperature
of 60 �C, and a print speed of 50 mm/sec. We expect that any 3D printer can be used.
6. Instrument operation

6.1. Device safety

In addition to the details in the video, it is worth emphasizing device safety. When plugged into a socket as intended,
there are live 120 V AC wires connecting the power socket to the two power modules as well as any exposed wiring inside
the base housing. A safety bracket is installed covering the socket and the high voltage wires, however fingers should be kept
outside of the box while it is plugged in and live. The water in the sample block as well as the sample dispensing need and
sample tubes are located above the electronics. While the electronics housing is water resistant it is not water-proof. Care
should be taken to ensure that excessive liquid does not spill into the lower housing which could damage the instrument.
The sample block should only be filled halfway with water or a water/bleach mixture as the volume of the sample tubeswill
fill the remainder of the aluminum box. We recommend plugging the instrument into a ground fault circuit interrupter (GFCI
[9]) outlet in case of a short due to any leaks. If a GFCI outlet is not available we recommend using a GFCI surge protector.
Additionally, we recommend taping the wires going into the electronics housing so that the wires enter from below the
housing. This is to divert any accidental drips away from the housing. The sample dispensing needle moves along its trajec-
tories as needed and is not covered or protected. Injury from this needle can be easily avoided following several precautions
including using a blunt 18 gauge needle, keeping hands away from the needle while the device is live and/or operational and
affixing it to the needle holder using a zip tie.
7. Validation and characterization

7.1. Temperature control

We first sought to validate the temperature control of the sample block. This was performed by monitoring the temper-
ature of both the sample bath and radiator over 30 h, results of which are given in Fig. 2 below. When a 4 �C setpoint was
used, the sample block was maintained within 1.2 �C of the set point.
6
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Table 4
Instructional videos.

Description Link

BioSamplr - Overview https://www.youtube.com/watch?v=LDfrEuQlaw0&list=PLjS0pTxHfAmIWwe8jJNtiYxd7_
pk8B8Ml&index=2&t=0s

BioSamplr - Assembly 1, Cartesian System &
Sample Block

https://www.youtube.com/watch?v=kIYA1cTLefA&list=PLjS0pTxHfAmIWwe8jJNtiYxd7_
pk8B8Ml&index=3&t=764s

BioSamplr - Electronics, Housing & Assembly https://www.youtube.com/watch?v=fbQN4Lf6akM&list=PLjS0pTxHfAmIWwe8jJNtiYxd7_
pk8B8Ml&index=4&t=19s

BioSamplr - Software https://www.youtube.com/watch?v=WgCr6D-Z5D4&list=PLjS0pTxHfAmIWwe8jJNtiYxd7_
pk8B8Ml&index=5&t=0s

BioSamplr - Operation https://www.youtube.com/watch?v=8ImIU9OsyoE

Table 5
3D printed parts.

Part Print Time Material (g)

M5_7mm_Spacer 11 min 1
Needle_Holder_v3 41 min 3
Top_Brackets 8 h 38 min 66
Pillow_Bracket 2 h 16 min 17
Screw_Stepper_Bracket 6 h 56 min 54
Radiator_Bracket 8 h 42 min 76
Sample_Block 12 h 44 min 106
Sample_Block_Lid 4 h 56 min 38
Fan_Cover 3 h 28 min 20
YZ_Bracket_x2 4 h 35 min 39
X_Gantry_Part1 5 h 58 min 49
X_Gantry_Part2 1 h 23 min 11
X_Switch_Bracket 1 h 19 min 9
Y_Switch_Bracket 2 h 4 min 14
Wire Clips 30 min 2
Housing_Top* 11 h 16 min 110
Fan_Wall 4 h 59 min 38
Fan_Bracket 2 h 47 min 19
Power_Source_Wall* 13 h 46 min 120
Pi_Wall* 12 h 59 min 114
Vent_Wall* 6 h 14 min 49
PCB_Bottom* 10 h 13 min 92
Pump_Housing* 14 h 15 min 104

* Indicates parts where heat set inserts are used.

Fig. 2. Temperature profile over time of the sample block (blue line) and radiator (red) line. Temperatures were monitored over 30 h with a sample block
temperature setpoint of 4 �C setpoint. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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7.2. Sample volume stability

In order to test the amount of evaporation from sample tubes the BioSamplr was set up to cool the sample block for a 30 h
time period at a 4 �C temperature setpoint with ten sample tubes holding 1.5 mL of water each. Initial weights of these tubes
were recorded. Seven of these tubes were left open to the air while three were snapped shut. Following the designated time
period the tubes were weighed again and these measurements were compared to the initial measurements. A difference of
less than 1% (0.95% +/� 0.77%, n = 10) from the initial measurements was observed.
7.3. Sample volume precision

Sample volume is a user defined variable. For purposes in our lab we routinely manually sample 1–5 mL from bioreactors.
In order to test variability of sample size the BioSamplr was set up to pump sixty samples of water (6 runs of 10 samples
each) each targeting 0.75 mL. The weight of each sample was measured. Results are given in Fig. 3. The overall relative stan-
dard deviation was 25.7%, with the majority of samples within 0.2 mL of the target. 10% of the samples (6/60) were below
0.3 mL or less than half of the target. While this may seem imprecise, the BioSamplr is not an analytical instrument, and the
key design specification is to draw sufficient sample, and store it properly (4 �C), to enable additional offline analysis, not
necessarily to have a very accurate volume. To this point, based on these results we would recommend target samples of
>1.0 mL. Of course more sample may be needed depending on specific user requirements. The current design can be easily
adapted to accommodate larger tubes (2 mL tubes or other vials) as needed.

The peristaltic pump in the current design, while reliable, is not extremely accurate or precise, which does lead to some
variation in sample volume. If higher precision and accuracy is necessary, the current BioSamplr design could be adapted to
use any pump although it will likely be significantly more expensive for this added hardware reliability. Alternatively, many
precise, custom open-source peristaltic pumps have been described previously [10,11] and could be integrated into the
BioSamplr for costs estimated at less than $100. Importantly for sampling from bioreactors, other factors can influence pump
accuracy such as variable sample viscosity throughout a fermentation process, air bubbles that can potentially get into the
sample tubing, pressure inside a bioreactor and the sampling flow rate. Furthermore the age of the pump tubing produces
variable malleability and changes in accuracy overtime.
7.4. Fermentation sampling

A fermentation using a genetically modified strain of E. coli producing pyruvate as recently reported by Li et al, [12] was
repeated in this work, where in addition to manual sampling, the BioSamplr was used to take online/automated samples for
a head to head comparison. Specifically, in this validation study we used a FISPTM (Flownamics, Amsterdam, Netherlands)
cell free sampling probe to draw cell free samples from the bioreactor. Specifically, strain DLF_Z0043, with plasmid
pCASCADE-g2, was used in two-stage fermentations, wherein phosphate depletion triggers a productive stationary phase
and pyruvate production. This strain was evaluated in a 1L instrumented bioreactor (Infors Multifors), and two analytes (glu-
cose and pyruvate) were measured from both manual and BioSamplr samples using HPLC as previously described. [12])
Results are given in Fig. 4 below. In the case of glucose the average relative error for automated samples compared to manual
samples was 6 ± 4% with a maximal error of 12%. In the case of glucose the average relative error for automated samples
compared to manual samples was 2 ± 2.7% with a maximal error of 8%.
8. Discussion

The combination of low cost microcontrollers and CPUs (such as Arduino and Raspberry Pi) and 3D printing has made DIY
hardware for scientific applications more accessible than ever [20]. Advanced hardware and control systems have been
developed in numerous areas including in bioreactor control and data collection [21]. Commercial online probes/sensors
for pO2, redox, pH, and temperature are routinely available, with probes reading optical density and/or viable cells becoming
more commonplace. While advanced sensors, such as those based on raman spectroscopy, may be able to monitor metabo-
lite and product levels in realtime [22,23], sampling is still the gold standard used to measure analytes in fermentation broth.
Manual sampling, particularly at regular intervals, is very time intensive and to date autosampling systems, which can sig-
nificantly reduce the time required to execute a fermentation, have been expensive and inaccessible to many labs.

Open source technologies have in recent years revolutionized what is possible in scientific laboratories with low budgets.
Free and open-source software (FOSS) has become a universal standard and open source hardware will soon follow suite
[13]. The RepRap movement as well as other 3D printing enables people to build custom equipment for their unique pur-
poses. It is through this sharing and customization that users can target specific instrument requirements while dispensing
with unnecessary features, which not only saves resources but also increases the user’s process knowledge allowing them to
easily troubleshoot and better maintain their equipment without external assistance. As open source devices accrue com-
plexity, advanced systems will be increasingly possible at fractional costs, and the prices of competing commercial devices
will be driven lower [14].
8



Fig. 3. Sampling consistency for 6 runs of 10 samples (60 samples in total) all set to sample 0.75 mL.

Fig. 4. Comparison of data obtained from manual samples with those taken by the BioSamplr in actual fermentations. Cell free samples were taken and
stored at 4 �C . Optical density (black circles, manual samples), glucose measurements (gray circles and lines), pyruvate measurements (red circles and
lines). Dashed lines indicate data frommanual samples, whereas solid lines indicate samples taken with the BioSamplr. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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With liquid handling instruments alone, many instruments have been described previously, each with their own
strengths and weaknesses, depending on the design specifications and the target application. A few of these low cost designs
include ‘‘Osmar, the open-source microsyringe autosampler” [15], ‘‘microIO: an open-source autosampler and fraction col-
lector for automated microfluidic input–output” [16], the ‘‘Ecosystem” instrument, which uses various 3-D printed cus-
tomizations for diverse applications [17], an autosampler, ‘‘OpenSampler” [18], and an open-source syringe pump [19].
Osmar for instance, while a physically large device, yields high precision and ease of integration with analytical instruments.
microIO combines an AutoSipper with fraction collection enabling automation of microfluidic inputs and outputs (as
opposed to simply managing output) The syringe based systems, with a simple design, yield high accuracy and precision
for small volumes, but do not allow for continuous flow. To our knowledge the BioSamplr is the first open source instrument
specifically designed for bioreactor sampling by integrating fraction collection and sample storage (refrigeration).

Since the BioSamplr is not a commercial device, some quality and reliability risk is taken by the user. Proper construction
and device understanding followed by proper use is required to ensure safety. Maintenance will be required to keep the
instrument functioning as intended. There is a trade off here as large amounts of money can be saved by bypassing commer-
cial certifications and warranties. A quality certification for bioprocess equipment can easily cost over $15,000, [24] which is
not necessary when the user is willing to personally build and troubleshoot the unit for themselves. The resulting quality of
open source hardware is dependent on the maker. Commercial instruments also generally come with a warranty to cover the
cost of repair or replacement. Many models exist to estimate warranty value [25,26,27] however for the BioSamplr, repairs
and maintenance would be very affordable, short of a catastrophic user induced failure, and it is the authors’ opinion that a
warranty is unnecessary in this situation. Scientists interested in the BioSamplr, as well as other open-source hardware, must
compare the benefits of quality certifications and warranties with the associated costs to determine the value of these fea-
tures for their specific situation. Another variable in the choice to use open source hardware is time. We estimate that with
all necessary design files the BioSamplr construction will take only a few hours to understand and once all printed compo-
nents have been obtained approximately three days to build. A summary of required print times is provided above (Table 5).
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While the capabilities of commercial autosampling devices are useful (such as measuring flow rates [28,29]) and perhaps
essential in various contexts, they are not necessary for many, particularly those in an academic setting, where the primary
value of automated sampling is reducing requirements for manual attention or sampling at odd hours. The BioSamplr, is an
open source, low costs solution to autosampling. The initial version enables routine sampling, and refrigerated sample stor-
age, greatly reducing the hands on time associated with bioreactor runs. Future iterations of the BioSamplr, will be focused
on enabling larger sample numbers to extend unmanned operation, and perhaps the development of DIY sample probes.
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